Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

6-Chloro-4-(2-phenylethenyl)chroman-2one

Kwang-Su Choi and Sung-Gon Kim*

Department of Chemistry, Kyonggi University, San 94-6, lui-dong, Yeongtong-gu, Suwon 443-760, Republic of Korea Correspondence e-mail: sgkim123@kgu.ac.kr

Received 2 November 2010; accepted 3 November 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.033; wR factor = 0.083; data-to-parameter ratio = 18.4.

The title compound, $C_{17}H_{13}ClO_2$, was obtained from the oxidation of 6-chloro-4-(2-phenylethenyl)chroman-2-ol, which was synthesized by the reaction of of (*E*)-3-(5-chloro-2-hydroxyphenyl)acrylaldehyde with styrylboronic acid using diethylamine as a catalyst. The six-membered pyranone ring of the chromane system has a screw-boat conformation. The dihedral angle between the least-squares planes of the chromane ring system and the styryl group is 85.28 (9)°.

Related literature

For the synthesis of the title compound, see: Choi & Kim (2010). For the biological activity of chromenes, see: Ellis & Lockhart (2007); Green *et al.* (1996); Horton *et al.* (2003).

Experimental

Crystal data

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{min} = 0.925, T_{max} = 0.986$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.083$ S = 1.063325 reflections $V = 1330.76 (4) Å^{3}$ Z = 4 Mo K\alpha radiation $\mu = 0.29 \text{ mm}^{-1}$ T = 100 K 0.28 \times 0.13 \times 0.05 mm

12258 measured reflections 3325 independent reflections 2839 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.021$

181 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.37$ e Å⁻³ $\Delta \rho_{min} = -0.25$ e Å⁻³

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0004139).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2627).

References

- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Choi, K.-S. & Kim, S.-G. (2010). Tetrahedron Lett. 51, 5203-5206.
- Ellis, G. P. & Lockhart, I. M. (2007). The Chemistry of Heterocyclic Compounds, Chromenes, Chromanones, and Chromones, Vol. 31, edited by G. P. Ellis, pp. 1–119. New York: Wiley–VCH.
- Geen, G. R., Evans, J. M. & Vong, A. K. (1996). Comprehensive Heterocyclic Chemistry II: Pyrans and their Benzo Derivatives: Applications, Vol. 5, edited by A. R. Katritzky, C. W. Rees & E. F. V. Scriven, pp. 469–500. Oxford: Pergamon Press.

Horton, D. A., Boume, G. T. & Smythe, M. L. (2003). *Chem. Rev.* **103**, 893–930. Sheldrick, G. M. (2008). *Acta Cryst.* **A64**, 112–122.

supplementary materials

Acta Cryst. (2010). E66, o3104 [doi:10.1107/S1600536810045101]

6-Chloro-4-(2-phenylethenyl)chroman-2-one

K.-S. Choi and S.-G. Kim

Comment

Chromanes (dihydrobenzopyranes) are ubiquitously found in numerous biologically active natural products. Molecules containing chromane scaffolds exhibit a broad range of bioactivities, such as antiviral, antitumor, antimicrobial, sex pheromone, and those of the central nervous system activity (Ellis & Lockhart, 2007; Green *et al.*, 1996; Horton *et al.* 2003). We report herein the crystal structure of the title compound, which belongs to this class of compounds.

In the title compound, the six-membered pyranone ring of the chromane system has a screw-boat conformation. The dihedral angle between the least-squares planes of the chromane ring system and the styryl group is $85.28 (9)^{\circ}$.

Experimental

To a solution of triethylamine (0.10 mmol) in CH_2Cl_2 (1.5 ml) was added styrylboronic acid (0.60 mmol) at room temperature. The solution was stirred for 5 min before addition of (*E*)-3-(5-chloro-2-hydroxyphenyl)acrylaldehyde (0.50 mmol). After stirring for 3 h, the resulting mixture was direct purified by silica gel chromatography to afford 6-chloro-3,4-dihydro-4-styryl-2*H*-chromen-2-ol. Oxidation of 6-chloro-3,4-dihydro-4-styryl-2*H*-chromen-2-ol (0.40 mmol) was performed in CH_2Cl_2 (2.0 ml) by adding of pyridinium chlorochromate (0.40 mmol) at room temperature. After 3 h, additional pyridinium chlorochromate (0.40 mmol) was added and after 6 h purification by silica gel chromatography was afforded the title compound (Fig. 2). Crystals suitable for X-ray analysis were obtained by slow evaporation from an *n*-hexane/CH₂Cl₂ solution.

Refinement

All H atoms were positioned geometrically, with C—H = 0.93–0.98 Å and constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(C)$, where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1. A view of the molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. The preparation scheme of the title compound.

6-Chloro-4-(2-phenylethenyl)chroman-2-one

Crystal data

$C_{17}H_{13}ClO_2$
$M_r = 284.72$
Monoclinic, $P2_1/c$
Hall symbol: -P 2ybc
<i>a</i> = 15.6682 (3) Å
b = 6.2800 (1) Å
<i>c</i> = 14.9383 (3) Å
$\beta = 115.129 \ (1)^{\circ}$
$V = 1330.76 (4) \text{ Å}^3$
Z = 4

Data collection

Bruker APEXII CCD diffractometer	3325 independent reflections
Radiation source: fine-focus sealed tube	2839 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.021$
ϕ and ω scans	$\theta_{\text{max}} = 28.4^{\circ}, \ \theta_{\text{min}} = 1.4^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2005)	$h = -18 \rightarrow 20$
$T_{\min} = 0.925, T_{\max} = 0.986$	$k = -8 \rightarrow 8$
12258 measured reflections	$l = -19 \rightarrow 14$

F(000) = 592 $D_{\rm x} = 1.421 \text{ Mg m}^{-3}$

 $\theta = 3.6-28.3^{\circ}$ $\mu = 0.28 \text{ mm}^{-1}$ T = 100 KBlock, silver

 $0.28\times0.13\times0.05~mm$

Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 5561 reflections

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct
	methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.033$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.083$	H-atom parameters constrained
S = 1.06	$w = 1/[\sigma^2(F_0^2) + (0.0306P)^2 + 0.755P]$
5 - 1.00	where $P = (F_0^2 + 2F_c^2)/3$
3325 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
181 parameters	$\Delta \rho_{max} = 0.37 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.24 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cl1	0.64583 (2)	0.83763 (5)	0.61691 (2)	0.02134 (9)
O1	0.35931 (6)	0.24736 (14)	0.62698 (7)	0.0185 (2)
O2	0.21611 (7)	0.17409 (16)	0.60995 (8)	0.0267 (2)
C1	0.39949 (9)	0.6045 (2)	0.59464 (9)	0.0149 (2)
C2	0.42529 (9)	0.3975 (2)	0.62766 (9)	0.0156 (2)
C3	0.51713 (9)	0.3250 (2)	0.65950 (9)	0.0176 (3)
H3A	0.5325	0.1864	0.6827	0.021*
C4	0.58581 (9)	0.4603 (2)	0.65657 (9)	0.0186 (3)
H4A	0.6477	0.4141	0.6777	0.022*
C5	0.56024 (9)	0.6657 (2)	0.62152 (9)	0.0166 (3)
C6	0.46877 (9)	0.7392 (2)	0.59102 (9)	0.0161 (2)
H6A	0.4536	0.8781	0.5682	0.019*
C7	0.27232 (9)	0.3112 (2)	0.61886 (10)	0.0186 (3)
C8	0.25822 (9)	0.5461 (2)	0.62445 (10)	0.0181 (3)
H8A	0.2881	0.5907	0.6931	0.022*
H8B	0.1913	0.5753	0.5998	0.022*
C9	0.29900 (9)	0.6771 (2)	0.56459 (9)	0.0158 (2)
H9A	0.2998	0.8275	0.5824	0.019*
C10	0.24087 (9)	0.6545 (2)	0.45496 (9)	0.0163 (2)
H10A	0.2362	0.5208	0.4265	0.020*
C11	0.19575 (9)	0.8170 (2)	0.39674 (10)	0.0170 (3)
H11A	0.2035	0.9496	0.4269	0.020*
C12	0.13500 (9)	0.8094 (2)	0.28984 (9)	0.0158 (2)
C13	0.07977 (9)	0.9877 (2)	0.24476 (10)	0.0189 (3)
H13A	0.0856	1.1106	0.2816	0.023*
C14	0.01637 (9)	0.9834 (2)	0.14573 (10)	0.0213 (3)
H14A	-0.0200	1.1029	0.1169	0.026*
C15	0.00700 (9)	0.8019 (2)	0.08960 (10)	0.0209 (3)
H15A	-0.0367	0.7976	0.0238	0.025*
C16	0.06374 (9)	0.6256 (2)	0.13271 (10)	0.0202 (3)
H16A	0.0591	0.5048	0.0949	0.024*
C17	0.12697 (9)	0.6293 (2)	0.23151 (10)	0.0184 (3)
1117 4	0 1645	0.5109	0.2594	0.022*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

 U^{11} U^{22} U^{33} U^{12} U^{13} U^{23}

supplementary materials

Cl1	0.01884 (16)	0.02132 (17)	0.02491 (18)	-0.00529 (12)	0.01029 (13)	-0.00125 (13)
O1	0.0182 (4)	0.0133 (4)	0.0248 (5)	-0.0015 (4)	0.0099 (4)	0.0013 (4)
O2	0.0231 (5)	0.0219 (5)	0.0368 (6)	-0.0055 (4)	0.0142 (5)	0.0006 (4)
C1	0.0160 (6)	0.0155 (6)	0.0117 (6)	0.0004 (5)	0.0044 (5)	-0.0005 (5)
C2	0.0172 (6)	0.0153 (6)	0.0138 (6)	-0.0027 (5)	0.0062 (5)	-0.0011 (5)
C3	0.0196 (6)	0.0145 (6)	0.0169 (6)	0.0023 (5)	0.0061 (5)	0.0020 (5)
C4	0.0156 (6)	0.0203 (6)	0.0180 (6)	0.0011 (5)	0.0053 (5)	-0.0005 (5)
C5	0.0173 (6)	0.0174 (6)	0.0156 (6)	-0.0044 (5)	0.0073 (5)	-0.0019 (5)
C6	0.0198 (6)	0.0136 (6)	0.0138 (6)	-0.0009 (5)	0.0060 (5)	0.0000 (5)
C7	0.0188 (6)	0.0209 (7)	0.0168 (6)	-0.0015 (5)	0.0081 (5)	0.0003 (5)
C8	0.0177 (6)	0.0191 (6)	0.0187 (6)	0.0002 (5)	0.0087 (5)	-0.0008 (5)
C9	0.0160 (6)	0.0134 (6)	0.0169 (6)	0.0003 (5)	0.0059 (5)	-0.0006 (5)
C10	0.0154 (6)	0.0153 (6)	0.0176 (6)	-0.0010 (5)	0.0064 (5)	-0.0020 (5)
C11	0.0160 (6)	0.0166 (6)	0.0195 (6)	-0.0009 (5)	0.0087 (5)	-0.0008 (5)
C12	0.0137 (5)	0.0173 (6)	0.0173 (6)	-0.0005 (5)	0.0076 (5)	0.0027 (5)
C13	0.0211 (6)	0.0175 (6)	0.0214 (7)	0.0022 (5)	0.0123 (5)	0.0013 (5)
C14	0.0206 (6)	0.0235 (7)	0.0218 (7)	0.0074 (5)	0.0110 (5)	0.0069 (5)
C15	0.0170 (6)	0.0297 (7)	0.0158 (6)	0.0015 (5)	0.0067 (5)	0.0029 (5)
C16	0.0200 (6)	0.0216 (7)	0.0201 (7)	-0.0018 (5)	0.0096 (5)	-0.0031 (5)
C17	0.0176 (6)	0.0167 (6)	0.0217 (7)	0.0031 (5)	0.0092 (5)	0.0030 (5)

Geometric parameters (Å, °)

Cl1—C5	1.7456 (13)	C9—C10	1.5049 (17)
O1—C7	1.3758 (15)	С9—Н9А	0.9800
O1—C2	1.3962 (15)	C10-C11	1.3322 (18)
O2—C7	1.1981 (16)	C10—H10A	0.9300
C1—C2	1.3880 (18)	C11—C12	1.4722 (18)
C1—C6	1.3953 (17)	C11—H11A	0.9300
C1—C9	1.5127 (17)	C12—C13	1.4002 (18)
C2—C3	1.3867 (18)	C12—C17	1.4004 (18)
C3—C4	1.3863 (18)	C13—C14	1.3884 (19)
С3—НЗА	0.9300	C13—H13A	0.9300
C4—C5	1.3861 (19)	C14—C15	1.385 (2)
C4—H4A	0.9300	C14—H14A	0.9300
C5—C6	1.3856 (18)	C15—C16	1.3945 (19)
С6—Н6А	0.9300	C15—H15A	0.9300
С7—С8	1.4990 (19)	C16—C17	1.3851 (19)
C8—C9	1.5394 (17)	C16—H16A	0.9300
C8—H8A	0.9700	C17—H17A	0.9300
C8—H8B	0.9700		
C7—O1—C2	120.43 (10)	C10—C9—C8	111.91 (10)
C2—C1—C6	117.87 (11)	C1—C9—C8	107.64 (10)
C2—C1—C9	119.80 (11)	С10—С9—Н9А	108.6
C6—C1—C9	122.32 (11)	С1—С9—Н9А	108.6
C3—C2—C1	122.19 (12)	С8—С9—Н9А	108.6
C3—C2—O1	115.96 (11)	C11—C10—C9	123.12 (12)
C1—C2—O1	121.80 (11)	C11-C10-H10A	118.4
C4—C3—C2	119.62 (12)	С9—С10—Н10А	118.4

С4—С3—НЗА	120.2	C10-C11-C12	127.08 (12)
С2—С3—НЗА	120.2	C10-C11-H11A	116.5
C5—C4—C3	118.59 (12)	C12—C11—H11A	116.5
С5—С4—Н4А	120.7	C13—C12—C17	118.20 (12)
C3—C4—H4A	120.7	C13—C12—C11	118.61 (12)
C6—C5—C4	121.80 (12)	C17—C12—C11	123.15 (12)
C6—C5—Cl1	119.05 (10)	C14—C13—C12	120.90 (12)
C4—C5—Cl1	119.14 (10)	C14—C13—H13A	119.6
C5—C6—C1	119.89 (12)	C12—C13—H13A	119.6
С5—С6—Н6А	120.1	C15—C14—C13	120.31 (13)
С1—С6—Н6А	120.1	C15—C14—H14A	119.8
O2—C7—O1	117.02 (12)	C13—C14—H14A	119.8
O2—C7—C8	126.49 (12)	C14—C15—C16	119.39 (13)
O1—C7—C8	116.47 (11)	C14—C15—H15A	120.3
С7—С8—С9	112.71 (10)	C16—C15—H15A	120.3
С7—С8—Н8А	109.0	C17—C16—C15	120.39 (12)
С9—С8—Н8А	109.0	C17—C16—H16A	119.8
С7—С8—Н8В	109.0	C15—C16—H16A	119.8
С9—С8—Н8В	109.0	C16—C17—C12	120.75 (12)
H8A—C8—H8B	107.8	C16—C17—H17A	119.6
C10—C9—C1	111.54 (10)	С12—С17—Н17А	119.6
C6—C1—C2—C3	2.07 (19)	C2-C1-C9-C10	-94.72 (14)
C9—C1—C2—C3	-177.61 (12)	C6—C1—C9—C10	85.61 (14)
C6—C1—C2—O1	-175.28 (11)	C2—C1—C9—C8	28.41 (15)
C9—C1—C2—O1	5.04 (18)	C6—C1—C9—C8	-151.26 (12)
C7—O1—C2—C3	165.08 (11)	C7—C8—C9—C10	72.17 (14)
C7—O1—C2—C1	-17.41 (17)	C7—C8—C9—C1	-50.73 (14)
C1—C2—C3—C4	-1.5 (2)	C1C9C10C11	-122.70 (13)
O1—C2—C3—C4	175.98 (11)	C8—C9—C10—C11	116.65 (13)
C2—C3—C4—C5	-0.02 (19)	C9-C10-C11-C12	-177.86 (11)
C3—C4—C5—C6	0.96 (19)	C10-C11-C12-C13	168.28 (12)
C3—C4—C5—Cl1	-179.75 (10)	C10-C11-C12-C17	-9.2 (2)
C4—C5—C6—C1	-0.38 (19)	C17—C12—C13—C14	2.21 (18)
Cl1—C5—C6—C1	-179.67 (9)	C11—C12—C13—C14	-175.41 (11)
C2—C1—C6—C5	-1.11 (18)	C12—C13—C14—C15	-0.25 (19)
C9—C1—C6—C5	178.56 (11)	C13-C14-C15-C16	-1.82 (19)
C2—O1—C7—O2	173.59 (12)	C14—C15—C16—C17	1.90 (19)
C2—O1—C7—C8	-7.79 (17)	C15-C16-C17-C12	0.10 (19)
02—C7—C8—C9	-138.65 (14)	C13—C12—C17—C16	-2.13 (18)
O1—C7—C8—C9	42.87 (16)	C11—C12—C17—C16	175.38 (12)

Fig. 1

